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ABSTRACT

The Famine Early Warning Systems Network (FEWS NET) team provides food insecurity outlooks for several

developing countries inAfrica, centralAsia, andCentralAmerica. This studydescribes development of a newglobal

reference evapotranspiration (ET0) seasonal reforecast and skill evaluation with a particular emphasis on the po-

tential use of this dataset by FEWS NET to support food insecurity early warning. The ET0 reforecasts span the

1982–2009 period and are calculated following the American Society for Civil Engineers formulation of the

Penman–Monteith method driven by seasonal climate forecasts of monthly mean temperature, humidity, wind

speed, and solar radiation from the National Centers for Environmental Prediction CFSv2model and the National

Aeronautics and Space Administration GEOS-5 model. The skill evaluation, using deterministic and probabilistic

scores, focuses on the December–February (DJF), March–May (MAM), June–August (JJA), and September–

November seasons.The results indicate thatET0 forecasts are apromising tool for earlywarningof drought and food

insecurity.Globally, the regionswhere forecasts aremost skillful (correlation. 0.35 at leads of 2months) include the

westernUnited States, northern parts of SouthAmerica, parts of the Sahel region, and southernAfrica. The FEWS

NET regions where forecasts are most skillful (correlation . 0.35 at lead 3) include northern sub-Saharan Africa

(DJF; dry season), CentralAmerica (DJF; dry season), parts ofEastAfrica (JJA;wet season), southernAfrica (JJA;

dry season), and central Asia (MAM; wet season). A case study over parts of East Africa for the JJA season shows

that ET0 forecasts in combination with the precipitation forecasts would have provided early warning of recent

severe drought events (e.g., in 2002, 2004, 2009) that contributed to substantial food insecurity in the region.

1. Introduction

The Famine Early Warning Systems Network (FEWS

NET) is a leading provider of early warning and analysis

on acute food insecurity (http://www.fews.net/about-us)

to help government decision-makers and relief agencies

plan for and respond to humanitarian crises in 36 of the

most food-insecure countries, mainly located in Africa,

Central America, and central Asia. Agroclimatology—

the condition of climate and agriculture—is one of the

four primary dimensions of food insecurity assessments,

along with livelihoods, markets and trade, and nutrition.

For agroclimatological monitoring, FEWS NET

uses several datasets (http://earlywarning.usgs.gov/fews)

from remotely sensed (Brown et al. 2007) to in situ

(Velpuri et al. 2014) andmodeling sources, such asClimate

Hazards Group InfraRed Precipitation with Station (Funk

et al. 2015), ‘‘eMODIS’’ (Jenkerson et al. 2010), and

FEWS NET Land Data Assimilation System (McNally

et al. 2017). For early warning, however, FEWS NET’s

primary focus has so far been on the precipitation fore-

casts for the upcoming season. Precipitation, as important

as it is for agroclimatological conditions, only reflects one
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side of the crop water balance, the other one being actual

evapotranspiration (AET—the flux of the moisture from

the cropped surface to the atmosphere), which is also

influenced by evaporative demand (the demand in the

atmosphere for AET).

FEWSNET currently provides scenarios of crop-yield

conditions that are based on the expected precipitation

scenarios but only the climatological mean values of

evaporative demand, which therefore do not account for

evaporative demand’s 1) interannual variability and 2)

potential long-term changes due to global warming. To

fill this gap, FEWS NET has recently invested in build-

ing reference evapotranspiration (ET0; Allen et al. 2005)

monitoring datasets and forecasts. This effort is timely in

that recent studies have highlighted the value of ET0 for

drought monitoring and forecasting. For example, the

evaporative demand drought index (Hobbins et al. 2016;

McEvoy et al. 2016a), which is based on ET0 and ex-

ploits the land–atmosphere interactions found between

AET and ET0, has been shown to provide early warning

of drought conditions. Moreover, McEvoy et al. (2016b)

demonstrated the potential of seasonal forecasts of ET0

anomalies from the National Centers for Environmental

Prediction (NCEP) Climate Forecast System, version 2

(CFSv2; Saha et al. 2014), in providing improved skill

relative to precipitation for seasonal drought predictions

across the United States (especially during the summer

growing season in the central and northeastern

United States).

This study provides a first skill evaluation of global

seasonal ET0 forecasts for their potential use in food

insecurity assessments by FEWS NET. The primary

objectives of this study are 1) to develop ET0 reforecasts

at a global scale, 2) to analyze their skill globally with

particular emphasis on FEWS NET focus regions, and

3) to illustrate how ET0 forecasts can be used for

drought early warning applications.

2. Data and methods

a. Reference evapotranspiration (ET0) forecasts

ET0 (mmday21) forecasts are calculated following the

American Society for Civil Engineers (ASCE) formula-

tion of the Penman–Monteith method (Allen et al. 2005):

ET
0
5

D

D1 g(11C
d
U

2
)

R
n
2G

l

1
g

D1 g(11C
d
U

2
)

C
n

T1 273
U

2
(e

s
2 e

a
) ,

(1)

where Rn is net radiation (MJm22 day21), G is ground

heat flux (MJm22 day21), T is mean daily temperature

(8C), U2 is mean daily wind speed at 2m (m s21), es is

saturation vapor pressure (kPa), ea is actual vapor

pressure (kPa), l is latent heat of vaporization (MJkg21),

D is the slope of the saturation vapor pressure–temperature

curve (kPa 8C21) atT,g is the psychrometric constant,Cn5
900 (grass reference), and Cd is 0.34 (grass reference).

The values of D, g, es, and ea are estimated using T,

specific humidity, and mean elevation (used to estimate

atmospheric pressure). The ensemble forecasts of

monthly mean maximum temperature, minimum tem-

perature, downward shortwave radiation, specific hu-

midity, and wind speed are taken from two different

forecast systems: 1) the NCEPCFSv2 (24–28members)

and 2) the National Aeronautics and Space Adminis-

tration (NASA) Goddard Earth Observing System

Model, version 5 (GEOS-5; Takacs et al. 1994; Molod

et al. 2015; 11 members). These are the only two

models contributing to the North American Multi-

model Ensemble (NMME; Kirtman et al. 2014) system

for which reforecasts of all four climate drivers needed

to calculate ET0 are accessible. Monthly CFSv2 and

GEOS-5 ET0 anomalies are calculated relative to the

model reforecast monthly climatological means

(1982–2009) from the corresponding initialization

month and lead time, as in McEvoy et al. (2016b) and

Kumar et al. (2014). The forecast skill has been cal-

culated using the reforecast ET0 anomaly, which re-

duced any systematic bias with the benchmark ET0

dataset.

b. Skill scores

The benchmark ET0 dataset used for calculating skill

of ET0 forecasts is also generated following ASCE’s

Penman–Monteith method but uses NASA’s Modern-

Era Retrospective Analysis for Research and Appli-

cations, version 2 (MERRA-2), atmospheric forcings

and is spatially downscaled using a finer-resolution

climatological mean of the International Water Man-

agement Institute monthly global potential evapo-

transpiration dataset. The skill is evaluated using

deterministic and probabilistic skill scores. The sec-

tions below describe briefly the methods used to

calculate those skill scores; further details can be found

in Shukla et al. (2017).

1) DETERMINISTIC SKILL SCORE

The correlation between the ensemble mean of the

forecast anomalies and observed anomalies is calculated

for 1982–2009 for each forecast period, lead time, and

grid cell. The ensemble mean of the forecast anomalies

is calculated by first converting each of the individual

ensemble members into an anomaly (Kumar et al. 2014)

and then calculating the mean of the anomalies.
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FIG. 1. (a) Deterministic skill (correlation) of 0-, 2-, and 5-month-lead multimodel

ensemble mean ET0 forecasts initialized in January, April, July, and October. ‘‘Mul-

timodel’’ refers to forecasts from both the CFSv2 and GEOS-5 models (total 35

members). The ensemble mean is the mean of the anomalies of the 35 members,

where the anomaly for each member is calculated using its own climatological mean

(for the given member and given lead time). Also shown is the difference between

multimodel (CFSv2 andGEOS-5 combined) skill and (b) CFSv2 and (c) GEOS-5 0-,

2-, and 5-month-lead monthly ET0 forecasts initialized in January, April, July, and

October.
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2) PROBABILISTIC SKILL SCORE

The ranked probability skill score (RPSS) is calcu-

lated to evaluate the ET0 ensemble forecasts for ter-

cile categories (upper, normal, and lower tercile)

events. Terciles are commonly used in probabilistic

forecasts by FEWS NET, and so evaluating forecasts

on the basis of how well they can identify the correct

tercile is an appropriate benchmark. The RPSS is

found from

RPSS5 12
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climatology

. (2)
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RPS5
1

M2 1
�
M

m21

�
�
m

k51

F
k
2 �

m

k51

O
k

�2

,

where M is the number of forecast categories, Fk is the

predicted probability in forecast category k, and Ok is

an indicator (0 5 no; 1 5 yes) for the observation

in category k. The RPSS measures how well a given

ensemble forecast does relative to a reference forecast

(e.g., a climatological forecast that assigns 33.33%

probability to each of the tercile categories) in fore-

casting the tercile category into which observations

fell. It rewards a forecast for the number of ensemble

members that fall within the observed category:

the larger that number is, the higher is the RPSS.

RPSS. 0 is considered to be skillful, and an RPSS of 1

indicates a perfect forecast.

3) RELIABILITY

The reliability of ET0 forecasts is calculated using

reliability diagrams. A reliability diagram shows how

often a given forecast probability of a given category

(e.g., a particular tercile) is realized in observations; it

can be applied directly to decision making. A perfectly

reliable ensemble forecast system would have 1:1 asso-

ciation with the observed frequency.

3. Evaluation of ET0 forecasts

a. Skill evaluation globally

Figure 1 shows globally the deterministic skill of the

monthly multimodel ET0 forecasts initialized in January,

April, July, and October at a lead time of 0, 2, and

5 months. Here, ‘‘lead 0’’ refers to a contemporaneous

forecast (e.g., a forecast for Januarymade in early January)

and ‘‘lead 2’’ refers to a forecast for 2months following the

forecast initialization period (e.g., a forecast for March

made in early January). The forecast skill in this format

highlights that, across most of the globe, skill is generally

the highest at lead 0 but decays rapidly afterward and

that skill varies with lead time and season. For example,

over the conterminous United States, the skill is highest

for forecasts initialized in January. For some parts of the

western United States skill persists through lead 5,

whereas the skill at lead 0 for forecasts initialized in July

is limited to parts of the northern, western, and central

United States and dissipates after lead 0. The lead-

0 skill over the central United States is also reported

by McEvoy et al. (2016b). Other skillful regions

(correlation . 0.35 at 2-month lead) include northern

parts of South America, parts of the Sahel region, and

southern Africa.

Figures 1b and 1c show that, in general, the skill of

multimodel forecasts is greater than the skill of any of

the individual models. Several regions (e.g., eastern and

southern Africa in Fig. 1b) show positive differences in

Figs. 1b and 1c. This finding validates the use of both

models in generating ensemble ET0 forecasts. As fore-

casts of the climate drivers become available from the

other NMME models, they eventually will be added to

this ensemble of ET0 forecasts, which potentially will

further increase the skill.

b. Skill evaluation over FEWS NET regions

Next, the skill evaluation is conducted for FEWS

NET focus regions: Africa, central Asia, and Central

America. The seasons considered for this study are

September–November (SON),December–February (DJF),

March–May (MAM), and June–August (JJA). Figure S1

of the online supplemental information shows the frac-

tion of annual precipitation received during each of those

seasons in FEWS NET focus regions to identify clima-

tologically wet or dry seasons in each of the regions, and

Table 1 lists the dry and wet seasons for each region.

From the perspective of FEWS NET, generally wet sea-

sons are important for agricultural conditions and gen-

erally dry seasons are important for pasture conditions.

Figure 2 shows the deterministic skill score of ET0

forecasts for each of the focus regions and for each of the

TABLE 1. List of the regions and seasons with ET0 forecast skill

persisting up to 3-month lead.

Region Season Type of season

Northern sub-Saharan Africa DJF Dry season

Central America DJF Dry season

East Africa (mainly Ethiopia,

Sudan, and Uganda)

JJA Wet season

Southern Africa JJA Dry season

Central Asia MAM Wet season
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seasons from lead 0 through lead 3. In general overAfrica

(Fig. 2a), skill (.0.35 correlation) is apparent over most

of the region at lead 0. The skillful region in Africa is

smallest for SON. There are only a few regions where in

some seasons the skill persists through a lead of 3months.

For Central America (Fig. 2b) the skill is generally only

apparent for DJF and up to lead 3 in some parts. For

central Asia (Fig. 2c), although the skill is mainly present

for MAM, there is also limited skill for central parts of

this region for SON. Table 1 lists the regions and seasons

in FEWS NET focus regions for which the skill exceeds

the 0.35 correlation threshold up to lead 3.

Figure 3 shows the RPSS for FEWS NET focus regions

for all seasons up to leads of 3 months. Overall, RPSS is

generally positive for most regions in Africa (Fig. 3a). For

central Africa (Fig. 3b) positive RPSS is generally limited

to DJF. For central Asia (Fig. 3c) positive RPSS prevails

over a large fraction of the region inMAM. In general, the

RPSS is .0.10 for up to lead 3 over the same regions and

seasons for which the correlation values are .0.35 for up

to a 3-month lead (Table 1).

Figure 4 shows the reliability of lead-0 seasonal ET0

forecasts for each of the tercile categories (the same in-

formation for lead 1 is shown in online supplemental

Fig. S2). For this analysis, Africa is divided into eastern

(58S–158N, 338–528E), central (58S–158N, 108–338E), west-
ern (58S–158N, 188W–108E), and southern Africa (358S–
58N, 108–508E). As indicated in Fig. 4, in general, forecasts

for the lower tercile category are more reliable, followed by

forecasts for the upper tercile, followed by the normal cat-

egory. The forecasts are also generally more reliable for

regions and seasons of high skill (Table 1) for upper and

lower tercile categories.

4. Example application of ET0 forecasts

The analysis thus far has focused on the evaluation of the

skill of ET0 forecasts through various skill scores. Long-

term skill analyses of forecasts are necessary to inform end

users of the seasons and regions for which those forecasts

can be most effective. This section presents an example of

how ET0 forecasts can complement FEWSNET’s existing

FIG. 2. Deterministic skill (correlation) of 0–3-month-lead multimodel ensemble mean seasonal ET0 forecasts for climatologically wet and dry

seasons in FEWS NET focus regions: (a) Africa, (b) Central America, and (c) central Asia.
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drought-forecasting tools. Here we focus on East Africa

(comprising parts of Ethiopia, Sudan, and Uganda) where

JJA is an important rainy season. The choice of the region

and season in this case is guided by 1) the relatively high

and consistent skill of ET0 forecasts (section 3) and pre-

cipitation forecasts, as reported by Shukla et al. (2017), and

2) the level of food and water insecurity in this region.

Some of the most severe drought events since the early

2000s (in 2002, 2004, and 2009) had a common climatic

feature: the region experienced both below-normal pre-

cipitation and above-normal ET0, with the latter likely

exacerbating the impacts of the former. Figures 5a and 5b

show the median of the standardized anomaly of ET0 and

precipitation forecasts for JJA of those years, with lead

0 being the forecast made in June and lead 3 being the

forecast made in March. Seasonal ET0 and precipitation

were consistently forecast to be respectively above and

below normal, with the severity of the forecast anomalies

increasing closer to the season. This example highlights

the potential value of ET0 forecasts for food insecurity

assessments because they complement the precipitation

forecasts andprovide amore confident outlook for looming

severe drought events, relative to outlooks that are based

solely on precipitation forecasts. Timely forecasts of even

a tendency toward a severe drought development help to

bring the region concerned to the attention of the national,

regional, and international agencies. They trigger a more

careful and regular monitoring of the agroclimatic condi-

tions that can contribute to a timely and appropriate re-

sponse to mitigate adverse impacts of the drought events.

5. Concluding remarks

This study evaluates the skill of ET0 forecasts globally,

with a particular emphasis on FEWS NET regions to ex-

amine if they can be of value for FEWS NET’s food in-

security outlook assessments. The key findings are as follows:

1) The skill is generally the highest over shorter lead

times and shows regional and seasonal variation.

FIG. 3. Probabilistic skill (RPSS) of 0–3-month-lead multimodel seasonal ET0 forecasts for climatologically wet and dry seasons in FEWS

NET focus regions: (a) Africa; (b) Central America; and (c) central Asia.
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The regions where forecasts are most skillful

(correlation . 0.35 at lead 2) include the western

United States, northern parts of South America,

parts of the Sahel region, and southern Africa.

2) Multimodel skill is generally higher than the skill

of an individual model.

3) The FEWSNET season and region combinations for

which forecasts are most skillful (correlation . 0.35;

RPSS . 0.1) at least 3 months in advance of the

season include DJF for northern sub-Saharan Africa

and Central America, JJA for southern Africa and

parts of East Africa, and MAM for central Asia.

The above findings have important implications

for FEWS NET and other regional drought early

warning systems globally, such as the California

and Nevada Drought Early Warning System (https://

www.drought.gov/drought/dews/california-nevada) and

the Mongolia Livestock Early Warning System

(http://www.mongolialews.net/). It is found that ET0

forecasts can be a particularly promising tool for early

warning during the dry seasons. When the ET0 skill is

high during the rainy seasons, it can be used in com-

bination with precipitation forecasts to more accu-

rately predict the severity of upcoming drought events

FIG. 4. Reliability of multimodel ensemble lead-0 seasonal ET0 forecasts for all FEWS NET focus regions. The dashed line represents

perfect reliability.
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(section 4). Even in cases with low precipitation

forecast skill during the rainy season, skillful ET0

forecasts can help to provide a better estimate of

moisture availability. ET0 forecasts can also be used

to drive existing FEWS NET tools such as the water

requirement satisfaction index (Senay et al. 2011;

Verdin and Klaver 2002), which is a crop water bal-

ance model designed for predicting crop yield and

FIG. 5. Median of JJA multimodel ensemble (a) ET0 forecasts (in terms of standardized

anomaly) and (b) precipitation forecasts for the drought events of 2002, 2004, and 2009 made

from March (lead 3) through June (lead 0) of the respective years.
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rangeland conditions, or to develop new early warning

products such as the standardized precipitation evapo-

transpiration index (Vicente-Serrano et al. 2010) fore-

casts. FEWS NET and collaborators have Internet

portals on which some of these products can be hosted.

Furthermore, FEWS NET supports capacity building in

the region through training that ensures that end users

(e.g., regional climate agencies and national meteoro-

logical agencies) have access to the ET0 forecast-based

products and are well equipped to use them to support

informed decision-making processes.

Acknowledgments. We thank the NASA GMAO team

for making reforecasts of GEOS5 available to us and ac-

knowledge support from NASA SERVIR-AST Grant

NNX16AN14G, the U.S. Geological Survey’s Cooperative

Agreement G09AC000001 and Great Basin Cooperative

Ecosystem Study Unit, and the National Oceanic and At-

mospheric Administration’s National Integrated Drought

Information System.

REFERENCES

Allen, R. G., I. A. Walter, R. Elliott, T. Howell, D. Itenfisu,

and M. Jensen, 2005: The ASCE standardized reference

evapotranspiration equation. ASCE–EWRI Task Committee

Rep. 0-7844-0805-X, 59 pp., http://www.kimberly.uidaho.edu/

water/asceewri/ascestzdetmain2005.pdf.

Brown, M. E., C. C. Funk, G. Galu, and R. Choularton, 2007:

Earlier famine warning possible using remote sensing and

models. Eos, Trans. Amer. Geophys. Union, 88, 381–382,

doi:10.1029/2007EO390001.

Funk, C., and Coauthors, 2015: The climate hazards infrared pre-

cipitation with stations—A new environmental record for

monitoring extremes. Sci. Data, 2, 150066, doi:10.1038/

sdata.2015.66.

Hobbins, M. T., A. Wood, D. J. McEvoy, J. L. Huntington,

C. Morton, M. Anderson, and C. Hain, 2016: The evaporative

demand drought index. Part I: Linking drought evolution to

variations in evaporative demand. J. Hydrometeor., 17,

1745–1761, doi:10.1175/JHM-D-15-0121.1.

Jenkerson, C. B., T. K. Maiersperger, and G. L. Schmidt, 2010:

eMODIS:A user-friendly data source. U.S. Geological Survey

Open-File Rep. 2010-1055, 22 pp., https://pubs.usgs.gov/of/

2010/1055/pdf/OF2010-1055.pdf.

Kirtman, B. P., and Coauthors, 2014: The North American Multi-

model Ensemble: Phase-1 seasonal-to-interannual prediction;

Phase-2 toward developing intraseasonal prediction.Bull. Amer.

Meteor. Soc., 95, 585–601, doi:10.1175/BAMS-D-12-00050.1.

Kumar, S., P. A. Dirmeyer, and J. L. Kinter III, 2014: Usefulness of

ensemble forecasts from NCEP Climate Forecast System in

sub-seasonal to intra-annual forecasting. Geophys. Res. Lett.,

41, 3586–3593, doi:10.1002/2014GL059586.

McEvoy, D. J., J. L. Huntington, M. T. Hobbins, A. Wood,

C.Morton,M.Anderson, and C.Hain, 2016a: The evaporative

demand drought index. Part II: CONUS-wide assessment

against common drought indicators. J. Hydrometeor., 17,

1763–1779, doi:10.1175/JHM-D-15-0122.1.

——, ——, J. F. Mejia, and M. T. Hobbins, 2016b: Improved sea-

sonal drought forecasts using reference evapotranspiration

anomalies. Geophys. Res. Lett., 43, 377–385, doi:10.1002/

2015GL067009.

McNally, A., and Coauthors, 2017: A land data assimilation system

for sub-Saharan Africa food and water security applications.

Sci. Data, 4, 170012, doi:10.1038/sdata.2017.12.
Molod, A., L. Takacs, M. Suarez, and J. Bacmeister, 2015: Devel-

opment of the GEOS-5 atmospheric general circulation

model: Evolution fromMERRA toMERRA2.Geosci. Model

Dev., 8, 1339–1356, doi:10.5194/gmd-8-1339-2015.

Saha, S., and Coauthors, 2014: The NCEP Climate Forecast

System version 2. J. Climate, 27, 2185–2208, doi:10.1175/

JCLI-D-12-00823.1.

Senay, G. B., J. P. Verdin, and J. Rowland, 2011: Developing

an operational rangeland water requirement satisfaction

index. Int. J. Remote Sens., 32, 6047–6053, doi:10.1080/

01431161.2010.516028.

Shukla, S., J. Roberts, A. Hoell, C. C. Funk, F. Robertson, and

B. Kirtman, 2017: Assessing North American Multimodel

Ensemble (NMME) seasonal forecast skill to assist in the early

warning of anomalous hydrometeorological events over East

Africa. Climate Dyn., doi:10.1007/s00382-016-3296-z, in press.

Takacs, L. L., A. Molod, and T.Wang, 1994: Documentation of the

Goddard Earth Observing System (GEOS) general circula-

tion model, version 1. Technical Report Series on Global

Modeling and Data Assimilation, Vol. 1, M. J. Suarez, Ed.,

NASA Tech. Memo. 104606, Vol. 1, 106 pp, https://ntrs.nasa.

gov/archive/nasa/casi.ntrs.nasa.gov/19950005172.pdf.

Velpuri, N. M., G. B. Senay, J. Rowland, J. P. Verdin, and

H. Alemu, 2014: Africa-wide monitoring of small surface

water bodies using multisource satellite data: A monitoring

system for FEWS NET. Nile River Basin: Ecohydrological

Challenges, Climate Change andHydropolitics, A.M.Melesse,

W. Abtew, and S. G. Setegn, Eds., Springer, 69–95,

doi:10.1007/978-3-319-02720-3_5.

Verdin, J., and R. Klaver, 2002: Grid-cell-based crop water

accounting for the famine early warning system. Hydrol.

Processes, 16, 1617–1630, doi:10.1002/hyp.1025.

Vicente-Serrano, S. M., S. Beguería, and J. I. López-Moreno, 2010:

A multiscalar drought index sensitive to global warming:

The standardized precipitation evapotranspiration index.

J. Climate, 23, 1696–1718, doi:10.1175/2009JCLI2909.1.

NOVEMBER 2017 SHUKLA ET AL . 2949

http://www.kimberly.uidaho.edu/water/asceewri/ascestzdetmain2005.pdf
http://www.kimberly.uidaho.edu/water/asceewri/ascestzdetmain2005.pdf
http://dx.doi.org/10.1029/2007EO390001
http://dx.doi.org/10.1038/sdata.2015.66
http://dx.doi.org/10.1038/sdata.2015.66
http://dx.doi.org/10.1175/JHM-D-15-0121.1
https://pubs.usgs.gov/of/2010/1055/pdf/OF2010-1055.pdf
https://pubs.usgs.gov/of/2010/1055/pdf/OF2010-1055.pdf
http://dx.doi.org/10.1175/BAMS-D-12-00050.1
http://dx.doi.org/10.1002/2014GL059586
http://dx.doi.org/10.1175/JHM-D-15-0122.1
http://dx.doi.org/10.1002/2015GL067009
http://dx.doi.org/10.1002/2015GL067009
http://dx.doi.org/10.1038/sdata.2017.12
http://dx.doi.org/10.5194/gmd-8-1339-2015
http://dx.doi.org/10.1175/JCLI-D-12-00823.1
http://dx.doi.org/10.1175/JCLI-D-12-00823.1
http://dx.doi.org/10.1080/01431161.2010.516028
http://dx.doi.org/10.1080/01431161.2010.516028
http://dx.doi.org/10.1007/s00382-016-3296-z
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19950005172.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19950005172.pdf
http://dx.doi.org/10.1007/978-3-319-02720-3_5
http://dx.doi.org/10.1002/hyp.1025
http://dx.doi.org/10.1175/2009JCLI2909.1

